Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Brain Res Bull ; 212: 110952, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636611

RESUMO

Anxiety is a prevalent mental illness known for its high incidence, comorbidity, and tendency to recur, posing significant societal and individual burdens. Studies have highlighted Interleukin-19 (IL-19) as having potential relevance in neuropsychiatric disorders. Our previous research revealed that IL-19 overexpression in colonies exacerbated anxiety-related behaviors induced by dextran sodium sulfate/stress. However, the precise role and molecular mechanisms of IL-19 in anxiety regulation remain uncertain. In this study, we initiated an acute restraint stress (ARS)-induced anxious mouse model and identified heightened expression of IL-19 and IL-20Rα in the medial prefrontal cortex (mPFC) of ARS mice. Notably, IL-19 and IL-20Rα were predominantly present in the excitatory pyramidal neurons of the mPFC under both basal and ARS conditions. Utilizing the adeno-associated virus (AAV) strategy, we demonstrated that IL-19 overexpression in the mPFC induced anxiety-related behaviors and elevated stress susceptibility. Additionally, we observed decreased protein levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the mPFC of IL-19 overexpression mice, accompanied by reduced phosphorylation of in the p38, JNK, and Erk signaling pathways. These findings emphasize the role of IL-19 in modulating anxiety-related behaviors within the mPFC and suggest its potential as a pathological gene and therapeutic target for anxiety.

2.
Cell Rep ; 43(3): 113858, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416645

RESUMO

RNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2). This led to suggestions of an "RNA bridge" between PRC2 and chromatin. Here, we show that RNase A treatment during ChIP causes the apparent loss of all facultative heterochromatin, including both PRC2 and H3K27me3 genome-wide. We track this observation to a gain of DNA from non-targeted chromatin, sequenced at the expense of DNA from facultative heterochromatin, which reduces ChIP signals. Our results emphasize substantial limitations in using RNase A treatment for mapping RNA-dependent chromatin occupancy and invalidate conclusions that were previously established for PRC2 based on this assay.


Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , RNA/genética , Heterocromatina , Ribonuclease Pancreático , Artefatos , DNA
3.
Stem Cell Reports ; 18(12): 2515-2527, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977144

RESUMO

The capability to generate induced pluripotent stem cell (iPSC) lines, in tandem with CRISPR-Cas9 DNA editing, offers great promise to understand the underlying genetic mechanisms of human disease. The low efficiency of available methods for homogeneous expansion of singularized CRISPR-transfected iPSCs necessitates the coculture of transfected cells in mixed populations and/or on feeder layers. Consequently, edited cells must be purified using labor-intensive screening and selection, culminating in inefficient editing. Here, we provide a xeno-free method for single-cell cloning of CRISPRed iPSCs achieving a clonal survival of up to 70% within 7-10 days. This is accomplished through improved viability of the transfected cells, paralleled with provision of an enriched environment for the robust establishment and proliferation of singularized iPSC clones. Enhanced cell survival was accompanied by a high transfection efficiency exceeding 97%, and editing efficiencies of 50%-65% for NHEJ and 10% for HDR, indicative of the method's utility in stem cell disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Linhagem Celular , Clonagem Molecular , Edição de Genes/métodos
4.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
5.
J Neurosci ; 43(37): 6460-6475, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37596052

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with poorly understood etiology. AD has several similarities with other "Western lifestyle" inflammatory diseases, where the gut microbiome and immune pathways have been associated. Previously, we and others have noted the involvement of metabolite-sensing GPCRs and their ligands, short-chain fatty acids (SCFAs), in protection of numerous Western diseases in mouse models, such as Type I diabetes and hypertension. Depletion of GPR43, GPR41, or GPR109A accelerates disease, whereas high SCFA yielding diets protect in mouse models. Here, we extended the concept that metabolite-sensing receptors and SCFAs may be a more common protective mechanism against Western diseases by studying their role in AD pathogenesis in the 5xFAD mouse model. Both male and female mice were included. Depletion of GPR41 and GPR43 accelerated cognitive decline and impaired adult hippocampal neurogenesis in 5xFAD and WT mice. Lack of fiber/SCFAs accelerated a memory deficit, whereas diets supplemented with high acetate and butyrate (HAMSAB) delayed cognitive decline in 5xFAD mice. Fiber intake impacted on microglial morphology in WT mice and microglial clustering phenotype in 5xFAD mice. Lack of fiber impaired adult hippocampal neurogenesis in both W and AD mice. Finally, maternal dietary fiber intake significantly affects offspring's cognitive functions in 5xFAD mice and microglial transcriptome in both WT and 5xFAD mice, suggesting that SCFAs may exert their effect during pregnancy and lactation. Together, metabolite-sensing GPCRs and SCFAs are essential for protection against AD, and reveal a new strategy for disease prevention.Significance Statement Alzheimer's disease (AD) is one of the most common neurodegenerative diseases; currently, there is no cure for AD. In our study, short-chain fatty acids and metabolite receptors play an important role in cognitive function and pathology in AD mouse model as well as in WT mice. SCFAs also impact on microglia transcriptome, and immune cell recruitment. Out study indicates the potential of specialized diets (supplemented with high acetate and butyrate) releasing high amounts of SCFAs to protect against disease.


Assuntos
Doença de Alzheimer , Microbiota , Feminino , Masculino , Gravidez , Animais , Camundongos , Cognição , Fibras na Dieta , Butiratos , Modelos Animais de Doenças
6.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315523

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Células-Tronco , Antivirais/farmacologia , Antivirais/uso terapêutico , Pulmão
7.
J Nat Prod ; 86(1): 1-7, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36649560

RESUMO

A new congener of chuangxinmycin (CM) was identified from Actinoplanes tsinanensis CPCC 200056. Its structure was determined as 3-methylchuangxinmycin (MCM) by 1D and 2D NMR. MCM could be generated in vivo from CM by heterologous expression of the vitamin B12-dependent radical SAM enzyme CxnA/A1 responsible for methylation of 3-demethylchuangxinmycin (DCM) in CM biosynthesis, indicating that CxnA/A1 could perform iterative methylation for MCM production. In vitro assays revealed significant activities of CM, DCM, and MCM against Mycobacterium tuberculosis H37Rv and clinically isolated isoniazid/rifampin-resistant M. tuberculosis, suggesting that CM and its derivatives may have potential for antituberculosis drug development.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Metilação , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Rifampina , Isoniazida
8.
bioRxiv ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36172136

RESUMO

SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems. One-sentence summary: Rational treatment strategies for SARS-CoV-2 derived from human PSC models.

9.
Nanomedicine ; 40: 102481, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748963

RESUMO

Tolerance induction is central to the suppression of autoimmunity. Here, we engineered the preferential uptake of nano-conjugated autoantigens by spleen-resident macrophages to re-introduce self-tolerance and suppress autoimmunity. The brain autoantigen, myelin oligodendrocyte glycoprotein (MOG), was conjugated to 200 or 500 nm silica nanoparticles (SNP) and delivered to the spleen and liver-resident macrophages of experimental autoimmune encephalomyelitis (EAE) mice, used as a model of multiple sclerosis. MOG-SNP conjugates significantly reduced signs of EAE at a very low dose (50 µg) compared to the higher dose (>800 µg) of free-MOG. This was associated with reduced proliferation of splenocytes and pro-inflammatory cytokines secretion, decreased spinal cord inflammation, demyelination and axonal damage. Notably, biodegradable porous SNP showed an enhanced disease suppression assisted by elevated levels of regulatory T cells and programmed-death ligands (PD-L1/2) in splenic and lymph node cells. Our results demonstrate that targeting nano-conjugated autoantigens to tissue-resident macrophages in lymphoid organs can effectively suppress autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Autoimunidade , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/uso terapêutico
10.
Front Microbiol ; 12: 680101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295318

RESUMO

Acute myocardial infarction (AMI) continues as the main cause of morbidity and mortality worldwide. Interestingly, emerging evidence highlights the role of gut microbiota in regulating the pathogenesis of coronary heart disease, but few studies have systematically assessed the alterations and influence of gut microbiota in AMI patients. As one approach to address this deficiency, in this study the composition of fecal microflora was determined from Chinese AMI patients and links between gut microflora and clinical features and functional pathways of AMI were assessed. Fecal samples from 30 AMI patients and 30 healthy controls were collected to identify the gut microbiota composition and the alterations using bacterial 16S rRNA gene sequencing. We found that gut microflora in AMI patients contained a lower abundance of the phylum Firmicutes and a slightly higher abundance of the phylum Bacteroidetes compared to the healthy controls. Chao1 (P = 0.0472) and PD-whole-tree (P = 0.0426) indices were significantly lower in the AMI versus control group. The AMI group was characterized by higher levels of the genera Megasphaera, Butyricimonas, Acidaminococcus, and Desulfovibrio, and lower levels of Tyzzerella 3, Dialister, [Eubacterium] ventriosum group, Pseudobutyrivibrio, and Lachnospiraceae ND3007 group as compared to that in the healthy controls (P < 0.05). The common metabolites of these genera are mostly short-chain fatty acids, which reveals that the gut flora is most likely to affect the occurrence and development of AMI through the short-chain fatty acid pathway. In addition, our results provide the first evidence revealing remarkable differences in fecal microflora among subgroups of AMI patients, including the STEMI vs. NSTEMI, IRA-LAD vs. IRA-Non-LAD and Multiple (≥2 coronary stenosis) vs. Single coronary stenosis groups. Several gut microflora were also correlated with clinically significant characteristics of AMI patients, including LVEDD, LVEF, serum TnI and NT-proBNP, Syntax score, counts of leukocytes, neutrophils and monocytes, and fasting serum glucose levels. Taken together, the data generated enables the prediction of several functional pathways as based on the fecal microfloral composition of AMI patients. Such information may enhance our comprehension of AMI pathogenesis.

11.
Nat Commun ; 12(1): 3015, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021136

RESUMO

The role of microglia cells in Alzheimer's disease (AD) is well recognized, however their molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-containing (using labelling with methoxy-XO4, XO4+) and non-containing (XO4-) microglia from an AD mouse model. Transcriptomics analysis identified different transcriptional trajectories in ageing and AD mice. XO4+ microglial transcriptomes demonstrated dysregulated expression of genes associated with late onset AD. We further showed that the transcriptional program associated with XO4+ microglia from mice is present in a subset of human microglia isolated from brains of individuals with AD. XO4- microglia displayed transcriptional signatures associated with accelerated ageing and contained more intracellular post-synaptic material than XO4+ microglia, despite reduced active synaptosome phagocytosis. We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using primary human microglia, and BV2 mouse microglial cells. Together, these findings provide insight into molecular mechanisms underpinning the functional diversity of microglia in AD.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Placa Amiloide/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Placa Amiloide/genética , Transcriptoma
12.
Nature ; 591(7851): 627-632, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33731926

RESUMO

Human pluripotent and trophoblast stem cells have been essential alternatives to blastocysts for understanding early human development1-4. However, these simple culture systems lack the complexity to adequately model the spatiotemporal cellular and molecular dynamics that occur during early embryonic development. Here we describe the reprogramming of fibroblasts into in vitro three-dimensional models of the human blastocyst, termed iBlastoids. Characterization of iBlastoids shows that they model the overall architecture of blastocysts, presenting an inner cell mass-like structure, with epiblast- and primitive endoderm-like cells, a blastocoel-like cavity and a trophectoderm-like outer layer of cells. Single-cell transcriptomics further confirmed the presence of epiblast-, primitive endoderm-, and trophectoderm-like cells. Moreover, iBlastoids can give rise to pluripotent and trophoblast stem cells and are capable of modelling, in vitro, several aspects of the early stage of implantation. In summary, we have developed a scalable and tractable system to model human blastocyst biology; we envision that this will facilitate the study of early human development and the effects of gene mutations and toxins during early embryogenesis, as well as aiding in the development of new therapies associated with in vitro fertilization.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Técnicas de Cultura de Células , Reprogramação Celular , Fibroblastos/citologia , Modelos Biológicos , Transcriptoma , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia
13.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
14.
Stem Cell Reports ; 14(6): 1018-1032, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32442534

RESUMO

Multiple protocols have been published for generation of iMGLs from hESCs/iPSCs. To date, there are no guides to assist researchers to determine the most appropriate methodology for microglial studies. To establish a framework to facilitate future microglial studies, we first performed a comparative transcriptional analysis between iMGLs derived using three published datasets, which allowed us to establish the baseline protocol that is most representative of bona fide human microglia. Secondly, using CRISPR to tag the classic microglial marker CX3CR1 with nanoluciferase and tdTomato, we generated and functionally validated a reporter ESC line. Finally, using this cell line, we demonstrated that co-culture of iMGL precursors with human glia and neurons enhanced transcriptional resemblance of iMGLs to ex vivo microglia. Together, our comprehensive molecular analysis and reporter cell line are a useful resource for neurobiologists seeking to use iMGLs for disease modeling and drug screening studies.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular , Genes Reporter , Células-Tronco Embrionárias Humanas/citologia , Microglia/citologia , Neurônios/citologia , Receptor 1 de Quimiocina CX3C/genética , Linhagem Celular , Técnicas de Cocultura/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Transcriptoma
15.
Cardiovasc Diagn Ther ; 10(2): 153-160, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32420095

RESUMO

BACKGROUND: Panax ginseng is a well-known medicinal herb that is widely used in traditional Chinese medicine for treating various diseases. Ginsenoside Rg3 (Rg3) is thought to be one of the most important active ingredients of Panax ginseng. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. METHODS: In the mouse heart injury model induced by isoproterenol (ISO), we used brain natriuretic peptide (BNP), lactate dehydrogenase (LDH) and caspase-3 ELISA kits to test myocardium injury. To test whether Rg3 protects myocardial injury through AMPK mediated autophagy, we used specific AMPK inhibitor in combination with Rg3. NLRP3 inflammasome related molecules such as NLRP3, ASC and caspase-1 were measured by western-blot following Rg3 treatment. RESULTS: We found that Rg3 significantly reduced ISO induced myocardial injury indicated by the downregulation of serum BNP and LDH. In addition, we showed that the improvement of myocardial injury by Rg3 was associated with enhanced expression of autophagy related protein and activation of AMPK downstream signaling pathway. CONCLUSIONS: We observed that inhibition of AMPK significantly reversed the myocardial protective effect of Rg3, which is associated with a decrease of Rg3 induced autophagy. These together suggested that Rg3 may improve myocardial injury during MI through AMPK mediated autophagy. Our study also provides important translational evidence for using Rg3 in treating myocardial infarction (MI).

16.
Electron. j. biotechnol ; 45: 46-52, May 15, 2020. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1177424

RESUMO

BACKGROUND: The present study analyzed the synergistic protective effect of ß-alanine and taurine against myocardial ischemia/reperfusion. Myocardial infarct size, lipid peroxidation, and levels of glutathione peroxidase (Gpx), superoxide dismutase (SOD), reduced glutathione (GSH), catalase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), reactive oxygen species (ROS), apoptosis, and the mRNA and protein expression of Janus kinase 2 (JAK2) and signal transducer and activator 3 of transcription (STAT3) were determined. The molecular docking was carried out by using AutoDock 4.2.1. RESULTS: Combined treatment with ß-alanine and taurine reduced myocardial infarct size, lipid peroxidation, inflammatory marker, ROS levels, and apoptosis and increased Gpx, SOD activity, GSH, and catalase activity. Furthermore, combined treatment significantly reduced JAK2 and STAT3 mRNA and protein expression compared with the control. The small molecule was docked over the SH2 domain of a STAT3, and binding mode was determined to investigate the inhibitory potential of ß-alanine and taurine. ß-Alanine bound to SH2 domain with ΔG of -7.34 kcal/mol and KI of 1.91 µM. Taurine bound to SH2 domain with ΔG of -7.38 kcal/mol and KI of 1.95 µM. CONCLUSION: Taken together, these results suggest that the combined supplementation of ß-alanine and taurine should be further investigated as an effective therapeutic approach in achieving cardioprotection in myocardial ischemia/reperfusion.


Assuntos
Animais , Masculino , Ratos , Taurina/uso terapêutico , Cardiotônicos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , beta-Alanina/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Superóxido Dismutase , Imuno-Histoquímica , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Modelos Animais de Doenças , Janus Quinase 2 , Simulação de Acoplamento Molecular , Glutationa Peroxidase , Cardiopatias/tratamento farmacológico , Inflamação
17.
Food Chem ; 303: 125399, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470274

RESUMO

It is still a challenge to solve the matrix interferences in veterinary drug residue analysis. In this study, we reported a thin layer chromatography (TLC)-high-performance liquid chromatography (HPLC) method for determining total florfenicol (FF) residues, expressed as florfenicol amine (FFA), in porcine edible tissues. The tissue homogenate were acid-hydrolyzed to liberate the bound residues and convert them into FFA. The hydrolysates were washed with ethyl acetate and subsequently extracted with ethyl acetate under alkaline conditions. The supernatants were concentrated through evaporation, defatted with hexane, purified by TLC and analyzed by HPLC at 225 nm. The optimal developing solvent for TLC purification was ethyl acetate-acetone-ammonium hydroxide mixtures (2:8:0.5, v/v/v). The method was fully validated according to decision 2002/657/EC, and could be used for the routine monitoring of FF residues in pig. TLC showed excellent purification efficiency, and was expected to solve the matrix interferences in veterinary drug residue analysis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Delgada/métodos , Resíduos de Drogas/análise , Tianfenicol/análogos & derivados , Drogas Veterinárias/análise , Estruturas Animais/química , Animais , Cromatografia Líquida/métodos , Carne/análise , Suínos , Tianfenicol/análise
18.
Nat Neurosci ; 22(12): 2087-2097, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768052

RESUMO

There is currently little information available about how individual cell types contribute to Alzheimer's disease. Here we applied single-nucleus RNA sequencing to entorhinal cortex samples from control and Alzheimer's disease brains (n = 6 per group), yielding a total of 13,214 high-quality nuclei. We detail cell-type-specific gene expression patterns, unveiling how transcriptional changes in specific cell subpopulations are associated with Alzheimer's disease. We report that the Alzheimer's disease risk gene APOE is specifically repressed in Alzheimer's disease oligodendrocyte progenitor cells and astrocyte subpopulations and upregulated in an Alzheimer's disease-specific microglial subopulation. Integrating transcription factor regulatory modules with Alzheimer's disease risk loci revealed drivers of cell-type-specific state transitions towards Alzheimer's disease. For example, transcription factor EB, a master regulator of lysosomal function, regulates multiple disease genes in a specific Alzheimer's disease astrocyte subpopulation. These results provide insights into the coordinated control of Alzheimer's disease risk genes and their cell-type-specific contribution to disease susceptibility. These results are available at http://adsn.ddnetbio.com.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Córtex Entorrinal/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Microglia/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Apolipoproteínas E/metabolismo , Atlas como Assunto , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Masculino , Análise de Sequência de RNA , Regulação para Cima
19.
Molecules ; 24(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248172

RESUMO

Actinosynnema is a small but well-known genus of actinomycetes for production of ansamitocin, the payload component of antibody-drug conjugates against cancers. However, the secondary metabolite production profile of Actinosynnema pretiosum ATCC 31565, the most famous producer of ansamitocin, has never been fully explored. Our antiSMASH analysis of the genomic DNA of Actinosynnema pretiosum ATCC 31565 revealed a NRPS-PKS gene cluster for polyene macrolactam. The gene cluster is very similar to gene clusters for mirilactam and salinilactam, two 26-membered polyene macrolactams from Actinosynnema mirum and Salinispora tropica, respectively. Guided by this bioinformatics prediction, we characterized a novel 26-membered polyene macrolactam from Actinosynnema pretiosum ATCC 31565 and designated it pretilactam. The structure of pretilactam was elucidated by a comprehensive analysis of HRMS, 1D and 2D-NMR, with absolute configuration of chiral carbons predicted bioinformatically. Pretilactam features a dihydroxy tetrahydropyran moiety, and has a hexaene unit and a diene unit as its polyene system. A preliminary antibacterial assay indicated that pretilactam is inactive against Bacillus subtilis and Candida albicans.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Lactamas/metabolismo , Polienos/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Genes Bacterianos , Lactamas/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Família Multigênica , Fases de Leitura Aberta , Polienos/química , Metabolismo Secundário
20.
Methods Mol Biol ; 2008: 121-129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31124093

RESUMO

We recently developed a method for assessing RNA-DNA interactions using proximity ligation assays (PLA). This technique, termed the "RNA-DNA interaction assay" (RDIA), involves differentially labeling DNA and RNA with EdU and BrU, respectively. Once labeled, PLA is performed to assess if the labeled molecules are in close proximity. Here we provide a detailed description of the modified RDIA protocol utilizing currently commercially available BrdU antibodies. As an example, we show its ability to detect nascent transcripts on recently synthesized DNA in both cultured H1299 cells and mouse embryonic stem cells.


Assuntos
DNA , Células-Tronco Embrionárias Murinas/metabolismo , RNA , Animais , Anticorpos/química , Bromodesoxiuridina/química , Linhagem Celular , DNA/química , DNA/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , RNA/química , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...